Inverse planning optimization for hybrid prostate permanent‐seed implant brachytherapy plans using two source strengths
نویسندگان
چکیده
The purpose is to demonstrate the ability to generate clinically acceptable prostate permanent seed implant plans using two seed types which are identical except for their activity. The IPSA inverse planning algorithms were modified to include multiple dose matrices for the calculation of dose from different sources, and a selection algorithm was implemented to allow for the swapping of source type at any given source position. Five previously treated patients with a range of prostate volumes from 20-48 cm3 were re-optimized under two hybrid scenarios: (1) using 0.32 and 0.51 mGy m2 / h 125I, and (2) using 0.64 and 0.76 mGy m2 / h 125I. Isodose lines were generated and dosimetric indices , V150Prostate, D90Prostate, V150Urethra, V125Urethra, V120Urethra,V100Urethra, and D10Urethra were calculated. The algorithm allows for the generation of single-isotope, multi-activity hybrid brachytherapy plans. By dealing with only one radionuclide, but of different activity, the biology is unchanged from a standard plan. All V100Prostate were within 2.3 percentage points for every plan and always above the clinically desirable 95%. All V150Urethra were identically zero, and V120Urethra is always below the clinically acceptable value of 1.0 cm3. Clinical optimization times for the hybrid plans are still under one minute, for most cases. It is possible to generate clinically advantageous brachytherapy plans (i.e. obtain the same quality dose distribution as a standard single-activity plan) while incorporating leftover seeds from a previous patient treatment. This method will allow a clinic to continue to provide excellent patient care, but at a reduced cost. Multi-activity hybrid plans were equal in quality (as measured by the standard dosimetric indices) to plans with seeds of a single activity. Despite the expanded search space, optimization times for these studies were still under two minutes on a modern day laptop and can be reduced to below one minute in a clinical setting. With the typical cost of a set of PPI seeds on the order of thousands of dollars, it is possible to reduce the cost of brachytherapy treatments by allowing for easier use of seeds left over from a previous patient or unused due to a cancelled treatment.
منابع مشابه
Providing a fast conversion of total dose to biological effective dose (BED) for hybrid seed brachytherapy
Optimization of permanent seed implant brachytherapy plans for treatment of prostate cancer should be based on biological effective dose (BED) distributions, since dose does not accurately represent biological effects between different types of sources. Currently, biological optimization for these plans is not feasible due to the amount of time necessary to calculate the BED distribution. This ...
متن کاملThe effect of tissue composition of the prostate on the dose calculation for 125 I brachytherapy
P Introduction ermanent seed-implant treatment using I radionuclide is currently a standard procedure for early-stage prostate carcinoma, and the method is now considered comparable to external-beam radiation therapy and prostatectomy. As with external beam radiation therapy, permanent seed implant treatment of the prostate requires a dose-outcome correction, pointing out the importance of the ...
متن کاملOptimized planning for intraoperative planar permanent‐seed implant
We describe a fast, PC-based optimization planning system for a planar permanent-seed implant. Sites where this system is applicable include brain, lung, and head and neck. The system described here allows placing ribbons of different strengths and of different lengths along and across the implant plane. The program takes full advantage of the availability of different source strengths in inven...
متن کاملComparison of implant quality between intraoperatively built custom-linked seeds and loose seeds in permanent prostate brachytherapy using sector analysis
We compared the implant quality of intraoperatively built custom-linked (IBCL) seeds with loose seeds in permanent prostate brachytherapy. Between June 2012 and January 2015, 64 consecutive prostate cancer patients underwent brachytherapy with IBCL seeds (n = 32) or loose seeds (n = 32). All the patients were treated with 144 Gy of brachytherapy alone. Brachytherapy was performed using a dynami...
متن کاملIntensity Modulated Proton Therapy as a Boost Treatment after Prostate Seed Implant: A Treatment Planning Study
Purpose: Combination of Prostate Seed Implant (PSI) with External Beam Radiation Therapy (EBRT) remains as an attractive option for patients with intermediate or high-risk prostate cancer. One of the most widely used approaches is to use external beam radiation therapy (EBRT) to deliver boost doses after permanent prostate seed implant (PSI). In this study, the feasibility of using Intensity Mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2010